Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139247

ABSTRACT

Previously, studies have shown that leukemic cells exhibit elevated glycolytic metabolism and oxidative phosphorylation in comparison to hematopoietic stem cells. These metabolic processes play a crucial role in the growth and survival of leukemic cells. Due to the metabolic plasticity of tumor cells, the use of natural products has been proposed as a therapeutic alternative due to their ability to attack several targets in tumor cells, including those that could modulate metabolism. In this study, the potential of Petiveria alliacea to modulate the metabolism of K562 cell lysates was evaluated by non-targeted metabolomics. Initially, in vitro findings showed that P. alliacea reduces K562 cell proliferation; subsequently, alterations were observed in the endometabolome of cell lysates treated with the extract, mainly in glycolytic, phosphorylative, lipid, and amino acid metabolism. Finally, in vitro assays were performed, confirming that P. Alliacea extract decreased the oxygen consumption rate and intracellular ATP. These results suggest that the anti-tumor activity of the aqueous extract on the K562 cell line is attributed to the decrease in metabolites related to cell proliferation and/or growth, such as nucleotides and nucleosides, leading to cell cycle arrest. Our results provide a preliminary part of the mechanism for the anti-tumor and antiproliferative effects of P. alliacea on cancer.


Subject(s)
Leukemia, Myeloid , Phytolaccaceae , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , K562 Cells , Leukemia, Myeloid/drug therapy , Phytolaccaceae/chemistry
2.
Cancers (Basel) ; 15(22)2023 Nov 18.
Article in English | MEDLINE | ID: mdl-38001725

ABSTRACT

Prostate cancer is a significant global health concern, and its prevalence is increasing worldwide. Despite extensive research efforts, the complexity of the disease remains challenging with respect to fully understanding it. Metabolomics has emerged as a powerful approach to understanding prostate cancer by assessing comprehensive metabolite profiles in biological samples. In this study, metabolic profiles of patients with benign prostatic hyperplasia (BPH), prostate cancer (PCa), and metastatic prostate cancer (Met) were characterized using an untargeted approach that included metabolomics and lipidomics via liquid chromatography and gas chromatography coupled with high-resolution mass spectrometry. Comparative analysis among these groups revealed distinct metabolic profiles, primarily associated with lipid biosynthetic pathways, such as biosynthesis of unsaturated fatty acids, fatty acid degradation and elongation, and sphingolipid and linoleic acid metabolism. PCa patients showed lower levels of amino acids, glycerolipids, glycerophospholipids, sphingolipids, and carnitines compared to BPH patients. Compared to Met patients, PCa patients had reduced metabolites in the glycerolipid, glycerophospholipid, and sphingolipid groups, along with increased amino acids and carbohydrates. These altered metabolic profiles provide insights into the underlying pathways of prostate cancer's progression, potentially aiding the development of new diagnostic, and therapeutic strategies.

3.
Front Mol Biosci ; 10: 1206074, 2023.
Article in English | MEDLINE | ID: mdl-37818099

ABSTRACT

Chagas disease (ChD), caused by Trypanosoma cruzi, is endemic in American countries and an estimated 8 million people worldwide are chronically infected. Currently, only two drugs are available for therapeutic use against T. cruzi and their use is controversial due to several disadvantages associated with side effects and low compliance with treatment. Therefore, there is a need to search for new tripanocidal agents. Natural products have been considered a potential innovative source of effective and selective agents for drug development to treat T. cruzi infection. Recently, our research group showed that hexanic extract from Clethra fimbriata (CFHEX) exhibits anti-parasitic activity against all stages of T. cruzi parasite, being apoptosis the main cell death mechanism in both epimastigotes and trypomastigotes stages. With the aim of deepening the understanding of the mechanisms of death induced by CFHEX, the metabolic alterations elicited after treatment using a multiplatform metabolomics analysis (RP/HILIC-LC-QTOF-MS and GC-QTOF-MS) were performed. A total of 154 altered compounds were found significant in the treated parasites corresponding to amino acids (Arginine, threonine, cysteine, methionine, glycine, valine, proline, isoleucine, alanine, leucine, glutamic acid, and serine), fatty acids (stearic acid), glycerophospholipids (phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine), sulfur compounds (trypanothione) and carboxylic acids (pyruvate and phosphoenolpyruvate). The most affected metabolic pathways were mainly related to energy metabolism, which was found to be decrease during the evaluated treatment time. Further, exogenous compounds of the triterpene type (betulinic, ursolic and pomolic acid) previously described in C. fimbriata were found inside the treated parasites. Our findings suggest that triterpene-type compounds may contribute to the activity of CFHEX by altering essential processes in the parasite.

4.
Int J Mol Sci ; 24(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37629156

ABSTRACT

The poor response, adverse effects and drug resistance to treatment of acute myeloid leukemia (AML) have led to searching for safer and more effective therapeutic alternatives. We previously demonstrated that the alcoholic extract of Petiveria alliacea (Esperanza) has a significant in vitro antitumor effect on other tumor cells and also the ability to regulate energy metabolism. We evaluated the effect of the Esperanza extract in vitro and in vivo in a murine model of AML with DA-3/ER-GM cells. First, a chemical characterization of the extract was conducted through liquid and gas chromatography coupled with mass spectrometry. In vitro findings showed that the extract modulates tumor metabolism by decreasing glucose uptake and increasing reactive oxygen species, which leads to a reduction in cell proliferation. Then, to evaluate the effect of the extract in vivo, we standardized the mouse model by injecting DA-3/ER-GM cells intravenously. The animals treated with the extract showed a lower percentage of circulating blasts, higher values of hemoglobin, hematocrit, and platelets, less infiltration of blasts in the spleen, and greater production of cytokines compared to the control group. These results suggest that the antitumor activity of this extract on DA-3/ER-GM cells can be attributed to the decrease in glycolytic metabolism, its activity as a mitocan, and the possible immunomodulatory effect by reducing tumor proliferation and metastasis.


Subject(s)
Leukemia, Myeloid , Phytolaccaceae , Animals , Mice , Tumor Burden , Gas Chromatography-Mass Spectrometry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
5.
Front Mol Biosci ; 10: 1215039, 2023.
Article in English | MEDLINE | ID: mdl-37614441

ABSTRACT

Introduction: Systemic sclerosis (SSc) is a chronic autoimmune disease, marked by an unpredictable course, high morbidity, and increased mortality risk that occurs especially in the diffuse and rapidly progressive forms of the disease, characterized by fibrosis of the skin and internal organs and endothelial dysfunction. Recent studies suggest that the identification of altered metabolic pathways may play a key role in understanding the pathophysiology of the disease. Therefore, metabolomics might be pivotal in a better understanding of these pathogenic mechanisms. Methods: Through a systematic review of the literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Guidelines (PRISMA), searches were done in the PubMed, EMBASE, Web of Science, and Scopus databases from 2000 to September 2022. Three researchers independently reviewed the literature and extracted the data based on predefined inclusion and exclusion criteria. Results: Of the screened studies, 26 fulfilled the inclusion criteria. A total of 151 metabolites were differentially distributed between SSc patients and healthy controls (HC). The main deregulated metabolites were those derived from amino acids, specifically homocysteine (Hcy), proline, alpha-N-phenylacetyl-L-glutamine, glutamine, asymmetric dimethylarginine (ADMA), citrulline and ornithine, kynurenine (Kyn), and tryptophan (Trp), as well as acylcarnitines associated with long-chain fatty acids and tricarboxylic acids such as citrate and succinate. Additionally, differences in metabolic profiling between SSc subtypes were identified. The diffuse cutaneous systemic sclerosis (dcSSc) subtype showed upregulated amino acid-related pathways involved in fibrosis, endothelial dysfunction, and gut dysbiosis. Lastly, potential biomarkers were evaluated for the diagnosis of SSc, the identification of the dcSSc subtype, pulmonary arterial hypertension, and interstitial lung disease. These potential biomarkers are within amino acids, nucleotides, carboxylic acids, and carbohydrate metabolism. Discussion: The altered metabolite mechanisms identified in this study mostly point to perturbations in amino acid-related pathways, fatty acid beta-oxidation, and in the tricarboxylic acid cycle, possibly associated with inflammation, vascular damage, fibrosis, and gut dysbiosis. Further studies in targeted metabolomics are required to evaluate potential biomarkers for diagnosis, prognosis, and treatment response.

6.
Trop Med Infect Dis ; 8(5)2023 May 03.
Article in English | MEDLINE | ID: mdl-37235311

ABSTRACT

BACKGROUND: Chagas disease is a potentially fatal disease caused by the parasite Trypanosoma cruzi. There is growing scientific interest in finding new and better therapeutic alternatives for this disease's treatment. METHODS: A total of 81 terpene compounds with potential trypanocidal activity were screened and found to have potential T. cruzi cysteine synthase (TcCS) inhibition using molecular docking, molecular dynamics, ADME and PAIN property analyses and in vitro susceptibility assays. RESULTS: Molecular docking analyses revealed energy ranges from -10.5 to -4.9 kcal/mol in the 81 tested compounds, where pentacyclic triterpenes were the best. Six compounds were selected to assess the stability of the TcCS-ligand complexes, of which lupeol acetate (ACLUPE) and α-amyrin (AMIR) exhibited the highest stability during 200 ns of molecular dynamics analysis. Such stability was primarily due to their hydrophobic interactions with the amino acids located in the enzyme's active site. In addition, ACLUPE and AMIR exhibited lipophilic characteristics, low intestinal absorption and no structural interferences or toxicity. Finally, selective index for ACLUPE was >5.94, with moderate potency in the trypomastigote stage (EC50 = 15.82 ± 3.7 µg/mL). AMIR's selective index was >9.36 and it was moderately potent in the amastigote stage (IC50 = 9.08 ± 23.85 µg/mL). CONCLUSIONS: The present study proposes a rational approach for exploring lupeol acetate and α-amyrin terpene compounds to design new drugs candidates for Chagas disease.

7.
Heliyon ; 8(3): e09182, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35368545

ABSTRACT

Chagas disease, a worldwide public health concern, is a chronic infection caused by Trypanosoma cruzi. Considering T. cruzi chronic persistence correlates with CD4+ and CD8+ T cell dysfunction and the safety and efficacy profiles of Benznidazol and Nifurtimox, the two drugs currently used for its etiological treatment, are far from ideal, the search of new trypanocidal treatment options is a highly relevant issue. Therefore, the objective of this work was to evaluate the trypanocidal effect and cytokine production induction of three extracts (hexane, dichloromethane and hydroalcoholic) obtained from Clethra fimbriata, a plant traditionally used as a febrifuge in Colombia. Additionally, the extracts' major components with the highest trypanocidal activity were determined. It was evidenced C. fimbriata hexane extract exhibited the highest activity capable of inhibiting the three parasite developmental stages with an IC50/EC50 of 153.9 ± 29.5 (epimastigotes), 39.3 ± 7.2 (trypomastigotes), and 45.6 ± 10.5 (amastigotes) µg/mL, presenting a low cytotoxicity in VERO cells with a selectivity index ranging from 6.49 to 25.4. Moreover, this extract induced trypomastigote apoptotic death and inhibited parasite cell infection. The extract also induced IFN-γ and TNF production in CD4+ and CD8+ T cells, as well as de novo production of the cytotoxic molecules granzyme B and perforin in CD8+ T cells from healthy donors. Fatty acids and terpenes represented C. fimbriata key compounds. Thus, the trypanocidal activity and cytokine production induction of the hexane extract may be associated with terpene presence, particularly, triterpenes.

8.
Exp Parasitol ; 223: 108079, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33524381

ABSTRACT

Chagas disease is caused by Trypanosoma cruzi, and it is an important cause of morbidity and mortality in Latin America. There are no vaccines, and the chemotherapy available to treat this infection has serious side effects. In a search for alternative treatments, we determined the in vitro susceptibility of epimastigote and trypomastigote forms of T. cruzi and the cytotoxic effects on peripheral blood mononuclear cells (PBMCs) of ethanolic extracts obtained from six different plant species. The ethanolic extracts of Ageratina vacciniaefolia, Clethra fimbriata and Siparuna sessiliflora showed antiprotozoal activity against epimastigotes and low cytotoxicity in mammalian cells. However, only the ethanolic extract of C. fimbriata showed activity against T. cruzi trypomastigotes, and it had low cytotoxicity in PBMCs. An analysis on the phytochemical composition of C. fimbriata extract showed that its metabolites were primarily represented by two families of compounds: flavonoids and terpenoids. Lastly, we analyzed whether the A. vacciniaefolia, C. fimbriata, or S. sessiliflora ethanolic extracts induced IFN-γ or TNF-α production. Significantly, ethanolic extracts of C. fimbriata induced TNF-α production and S. sessiliflora induced both cytokines. In addition, C. fimbriata and S. sessiliflora induced the simultaneous secretion of IFN-γ and TNF-α in CD8+ T cells. The antiprotozoal and immunomodulatory activity of C. fimbriata may be related to the presence of flavonoid and triterpene compounds in the extract. Thus, these findings suggest that C. fimbriata may represent a valuable source of new bioactive compounds for the therapeutic treatment of Chagas disease that combines trypanocidal activity with the capacity to boost the immune response.


Subject(s)
Chagas Disease/drug therapy , Leukocytes, Mononuclear/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Trypanosoma cruzi/drug effects , Adult , Ageratina/chemistry , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Chromatography, High Pressure Liquid , Clethraceae/chemistry , Colombia , Female , Flow Cytometry , Humans , Inhibitory Concentration 50 , Interferon-gamma/metabolism , Laurales/chemistry , Male , Medicine, Traditional , Plant Extracts/toxicity , Spectrometry, Mass, Electrospray Ionization , Tumor Necrosis Factor-alpha/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...